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Commitment and Time Consistency:
A Game-Theoretic Discussion

by
Daniel Klein and Brendan O'Flaherty

Abstract

The paper offers a game-theoretic framework for discussing commitment and
time consistency. We show when a commitment (or just the appearance of one)
is valuable, how valuable it is, and whether the commitment is time consistent.

We formulate restrictions on the set of eligible commitments. These
restrictions correspond to the "open-loop"” programming format, and we call the
restrictions "policy formation."

We give a game-theoretic depiction of Fischer's savings-taxation model of
time inconsistency. This depiction shows in a game tree the essential lessons of
the model.

The emphasis is on definition, examples, and interpretation. The paper
contains no formal propositions. Our goal is to show that the concepts
developed are useful for understanding commitment and time consistency, for
modeling situations with these characteristics, and for achieving general results.



1. PRELIMINARIES

In many strategic scenarios being able to make a commitment helps a
player. Indeed, in the scenario-rich work of Thomas Schelling, commitment
emerges as one of the central principles of strategy. In Schelling's discussion
(1960) the actor in need of commitment is likely to be a kidnapper, a terrorist,
or a military chief. In the public finance and macroeconomics literature the

actor is usually benevolent governments.

In this paper we offer a framework for discussing commitment and time
consistency. We do not give any account of commitment technology, of how a
commitment is conveyed. We show when a commitment (or the appearance
of one) is valuable, how valuable it is, and whether the commitment is time
consistent. Also, we apply the concepts developed by giving a game-theoretic
discussion of Fischer's savings-taxation model of time inconsistency (1980).
Our rendering of time inconsistency is not a new definition; rather it is the

standard definition fitted to a more general and more complete framework.

B T ; Promi Thr
One way to get your back scratched it to tell the other guy, "If you scratch
my back I'll scratch your back." The situation is depicted in Figure 1.
(Disregard for the moment the probabilities shown at v. Suppose that only
pure strategies are permitted.) Player 1 makes this promise. She had better

make the promise convincing, for otherwise Player 2 will treat it as hot air,



think that Player 1 will not scratch his back, and, therefore, not scratch
Player 1's back. Clearly Player 1 values commitment conveyance, for without
it no backs are scratched.

[Figure 1 here.]

The promise is time inconsistent because once Player 2 has scratched
Player 1's back, Player 1 would like to dissolve any commitment and revert to
not scratching. It is precisely this inconsistency that makes the commitment

a promise.

A second way to get your back scratched is to tell the other guy, "Scratch
my back or else I'll break your back.” The situation is depicted in Figure 2.
Again, Player 1 needs to make the plan convincihg, for otherwise Player 2 will
not oblige. Notice that although commitment conveyance is again of value,
the plan is time consistent: the ruler (Player 1) does not get to a node where
she would like to revise the plan. This plan is a threat.

tFigure 2 here.]

Schelling (1960, 177) pointed out the distinction: " [A] promise is different
from a threat. The difference is that a promise is costly when it succeeds, and
a threat is costly when it fails. A successful threat is one that is not carried
out,” whereas a successful (and genuine) promise is carried out. Not all
commitments are neatly categorized into pure promise and pure threat. We
will see an example that combines elements of both. For a fuller discussion of
promises and threats building on Schelling's original ideas and using the

framework developed in this paper, see Klein & O'Flaherty (1993).



h n rativ me Th Deal wi mitmen
Despite its obvious importance, the idea of commitment has eluded the
scenario-free world of noncooperative game theory.l The common suggestion

is to "write the commitments into the game" and use the noncooperative

concepts. But this approach suffers from four shortcomings.

In Figure 3 we take this suggestion for the commitment scenario of Figure
1 ("If you scratch my back I'll scratch your back"). We restrict attention to
pure strategies. In this formulation commitments become Player 1's first
moves. She can either commit to quid pro quo or not commit. Each of these
moves then leads to Player 2's binéry decision, and Player 2's choice will
imply payoffs since Player 1 has already determined her behavior. Naturally
the unique perfect equilibrium conforms to the same outcome of the
commitment story told for Figure 1 (namely, mutual scratching).

[Figure 3 here.]

The first shortcoming of this traditional formulation is that in the raw
structure of the game the commitment interpretation has been lost. Only once
a story is told about back scratching, only after labels are put on Player 1's
moves, can anything in the model be interpreted as a commitment. The
traditional formulation suppresses any hope of a pure theory of commitment.
As Schelling pointed out (1960, p156): Ohce we write the commitments into
the game tree "[t]he objects of our study, namely, these tactics together with
the communication and enforcement structures that they depend on, and the
timing of moves, have all disappeared." Building the commitment into the

game tree is acceptable for the telling of specific stories, but it fails to give



commitment a theoretical status distinct from game moves. It shuts the door
on establishing general results about commitment, since the commitment
interpretation remains only as a piece of the incidental story that
accompanies the bare machinery. In our formulation commitment notions

exist in the bare machinery.

The second shortcoming of the traditional formulation is that there is no
easy way to indicate Player 1's desire to undo her apparent commitment once
Player 2 has scratched her back. Thus there is no scope for a theory of time

inconsistency.

The third shortcoming is that a traditional formulation will complicate the
tree acutgly. As situations grow more complex, the number of possible
commitments grows rapidly. The fourth shortcoming is that the traditional
formulation deals inaptly with mixed strategy commitments. In Figure 1, if
mixed strategy commitments are permitted, the optimal plan for Player1 is to
elicit back scratching with the least costly promise, namely, the promise that
scratching will be returned with only 0.75 probability. Player 1's expected
payoff is then 0.75%4 + 0.25*5 = 4.25.2 To deal with such mixed strategy plans
in the traditional formulation would require additional branches in the tree in

Figure 3.

S-games

Our approach is to develop a new set of lenses with which to look at certain
strategic situations. What we see through these lenses is not a traditional
game but what we call an "S-game" (for Schelling and for Stackelberg). An

S-game specifies a traditional extensive form game, but it specifies some other



things as well. First it designates one player as the "ruler,” who
pre-emptively announces her strategy in the game. Second, it specifies
determinate responses to the ruler's announcement. True to the Stackelberg
tradition, the ruler can convey commitments, whereas the other players ("the
public") are confined to playing a subgame perfect equilibrium in the game
induced by the ruler's announcement. Third, an S-game specifies certain
important restrictions on the set of plans the ruler can announce. (These

restrictions correspond to the "open-loop” programming format.)

I retati itm n n
The announced plan is received by the public with complete credulity. As
investigators, we may remain unfixed on whether the public's beliefin the
announcement is warranted. We do not assume that the ruler's promises
and threats are credible (that is, worthy of belief); we assume only that they

are credited (or believed).

You can think about our analysis in two ways:

Interpretation 1; The ruler conveys genuine commitments.

Interpretation 2. The ruler conveys phony commitments.

Interpretation 1 says that it is common knowledge that the ruler must
truly commit to the announced plan at the start of the game. We then ask: If
at any of the ruler's nodes a genie were to pop out of a bottle and allow the
ruler to deviate from the announced plan, would she deviate?3 When the

public sees the genie and the ruler's deviation it correctly anticipates



sequentially rational play from the deviation onwards and adjusts its play

accordingly. The genie never actually appears.

Interpretation 2 says that the ruler does not really commit to the
announced plan but the public thinks she does. The public's belief is
mistaken. If the ruler ever deviates from the announced plan, the public
then realizes that her hands are not tied and that her behavior for the

remainder of the game will be sequentially rational.

Each interpretation has appealing aspects. As already stated, there is no
need to settle on one or the other. Because of the dual interpretations, rather
than saying that the ruler makes a commitment, we say that the ruler

conveys a commitment.

This paper is devoted to definitions, examples, and interpretation. It
strives for accessibility. It contains no formal propositions. The concepts
developed here have been used elsewhere to achieve general results. (Klein &
O'Flaherty (1991) show the relationships among the concepts developed and
familiar noncooperative concepts; Klein & O'Flaherty (1992) shows the crucial
role of "imperfect policy formation" in Paretian time inconsistency; Hillier,
Klein, and O'Flaherty (1992) show the crucial role of the prisoner‘s. dilemma

in Paretian commitment dominance.)



2. DEFINITIONS

The exposition of this section is organized in numbered subsections.

(2.1) An S-game is a four-tuple X = (G, i, (F,C), s). (Item (F, C), "policy

formation," is explained in Section 5 below.)

(2.2) The reference game G is an extensive form game.

(2.3) The ruler, i. and the public. Let I denote the index set of players of G,
where |I|=m+1. Playeri is called the ruler, and the set I\{i} of other players

is called the public. For the remainder of this paper we let player 1 be the

ruler (or i=1).

(2.4) Information assumption on G. Throughout this paper we make the

assumption that a subgame originates at every ruler node. This is the

common assumption in the time inconsistency literature.

(2.5) Plans. Let B' denote the set of player i's behavior strategies in G. In
the S-game Y, a subset B of B' is the set of permissible plang for the ruler, with
generic element b. Section 5 on "policy formation” explains why the ruler
may not have access to the complete set of behavior strategies, B'. Think of a

plan as an announcement of what the ruler will do at each of her nodes.

(2.6) Public response function, s. Let S denote the set of behavior strategy
m-tuples that exist in G for the public. Let s(b), the public response function,



denote the unique element of S that is picked out when plan b is announced.
For the remainder of the paper we assume that for every plan b s(b) is a

subgame perfect equilibrium in the m-player game induced by b.

(2.7) Ruler payoffs. U(b, d) denotes the ruler's payoff when she uses plan b

and the public uses behavior strategy m-tuple d € S. For U(b, s(b)) we will

sometimes employ the summary payoff function u(b) := U(b, s(b)).

(2.8) Plan optimality. A plan b* is optimal iff for all b € B, u(b*) > u(b).

(2.9) Local variations and subgames. For any ruler node v, let by, denote
the local strategy specified by b at v. Let blb'y denote the ruler's behavior
strategy that results if the local strategy assigned by b to node v is changed to
b'y while the local strategies assigned by b to other ruler nodes remain

unchanged.

Let G(v) denote the subgame whose origin is ruler node v. Let b(v) denote

the behavior strategy induced by plan b on G(v), and denote the ruler's payoff
function on G(v) as Uy(.), and her summary payoff function as uy(.). Let

s(b(v)) denote the behavior strategy m-tuple induced on G(v) by s(b).

3. SEQUENTIAL IRRATIONALITY AND COMMITMENT DOMINANCE

In Figure 1, in the subgame G(v) the pian shown ([scratch 2's back]) is

suboptimal. Similarly in Figure 2, in the subgame G(v) the plan shown



([break 2's back]) is suboptimal. We say that the plans of both examples are
sequentially irrational because in each case choices are specified that are

suboptimal in some subgame (not necessarily along the path of play!).

Formally, a plan b is sequentially rational iff for every ruler node v and

every local strategy b'y at v

uy( b(v) ) 2 uy( bW Ib'y). 1)

Relation (1) says that what b specifies at each v is a best choice, where "best" is
defined locally. To comprehend this definition think about applying (1)
backward through the game. If a plan is not sequentially rational, it is

nti irrati

Using the ideas of sequential irrationality and plan optimality, we get a
straightforward and natural standard for whether the ruler values
commitment conveyance. Without commitment conireyance the ruler is
restricted to sequentially rational plans. Therefore, were the ruler to have
commitment conveyance and were all her optimal plans to be sequentially
irrational, then we say she benefits from having commitment conveyance.
We call this property "commitment dominance." Thus, when all optimal

plans are sequentially irrational, the ruler faces commitment dominance. In
both Figure 1 and Figure 2 the ruler faces commitment dominance.

itment Dominance an Hling' itmen
In The Strategy of Conflict (1960, 150), Schelling suggests that a

commitment be thought of as a player's selective subtractions from her own



payoffs. In Figure 1 (restricting attention to the pure strategy optimal plan),
the ruler conveys a commitment to [scratch 2's back]. Thus, following
Schelling, we may say that she is convincing Player 2 that she has subtracted
at least one unit of payoff from her own payoff at terminal node z, thereby
making the plan credited. In Figure 2, with optimal plan of [break 2's back],
the ruler has convinced Player 2 that she has subtracted at least one unit of

payoff from her own payoff at z.

Commitment dominance, then, means that a ruler would be positively
benefited by having complete power to convey selective subtractions from her
own payoffs. We embrace Schelling's idea of what it means to convey a
commitment. Although our approach is fully consonant with Schelling's
notion of selective subtraction, in our discussion there is no need to make
further reference to it. Schelling's idea is implicit in optimal, sequentially

irrational plans.

4. TIME INCONSISTENCY

We saw in Figure 2 that commitment dominance does not imply time
inconsistency. The optimal plan [break 2's back] was sequentially irrational
but it was also time consistent. Time consistency addresses desirable
deviations from the original plan only along the path of play. Intuitively, a
ruler faces time inconsistency iff along the path of an optimal plan she
reaches a node where she would like to dissolve the original plan and revert to
a subplan that is sequentially rational in that subgame. For play of a game in
which reversion actually occurs (which implies that the original commitment

was phony), there is a concatenation at the reversion point. The public is

10



1n

startled at the reversion point.

Formally, the concatenated behavior strategy for the ruler x(b, v, b") is the
behavior strategy that results from behavior strategy b if the behavior strategy
induced by b on G(v), where v is a ruler node, is changed to b'(v) while the

local strategies assigned by b to other ruler nodes remain unchanged.

Similarly, the concatenated behavior strategy m-tuple for the public ¥(d, v, d")
is the behavior strategy m-tuple that results from behavior strategy m-tuple d
if the behavior strategy m-tuple induced by d on G(v), where v is a ruler node,
is changed to d'(v) while the local strategies assigned by d to other citizen

nodes remain unchanged.

A plan b is time inconsistent iff there exists a ruler node v and some

sequentially rational plan b' such that

U( x(b, v, b), ¥ si), v, s®) ) ) > ulb). 2

A plan that is not time inconsistent is called time congsistent .4 Built into
relation (2) is the along-the-path feature of time inconsistency: if node v is not
along the original path of play, the reversion at v will not contribute to making
the LHS of (2) greater than the RHS. Also built into the definition is the idea of
the public being startled at v. Although they play according to s(b) only at
citizens nodes that precede v, they play at those nodes under the belief that b

will hold for the entire game.

Our definition of time inconsistency is a natural and faithful

game-theoretic representation of what that term has always meant.
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Tesfatsion, for example, is quite explicit about the along-the-path nature of
time inconsistency. She says (1986, 25), an "economy is said to exhibit
inconsistency if the competitive equﬂibriu.m path resulting from government
reoptimization at some t > 0 is not a continuation of the competitive
equilibrium path resulting from the initial government optimization at time
0." While Tesfatsion is careful to specify the path, most definitions of time
inconsistency use temporal terms like "point in time," "later date," etc. Time
periods do have meaning in pure game theory. Too often readers, and
sometimes authors, have mistakenly interpreted "any point in time" as "any
ruler node," and thus equated time inconsistency with the failure of subgame
perfect equilibrium. This is an error, as has been pointed out by Fershtman
(1990), McTaggart & Salant (1988), and Guiso & Terlizzese (1990). When
definitions of time inconsistency refer to the initially optimal plan being no
longer optimal at a future "point in time," this criterion applies only for the
history that actually happens then, not for any history that might have

happened come that point in time.

The only distinctive feature of our definition is that, following the
interpretation of phony commitment conveyance, at a reached node the ruler
can reannounce only a sequentially rational subplan. Alternatively one may
wish to permit her to reannounce convincingly any subplan, and to fool the
public repeatedly. The issue of the proper choice set at the point of deviation
has scarcely arisen in the time inconsistency literature because in those
models the government typically reaches a point of time inconsistency at its
final decision node, so sequential rationality would be its preferred deviation

even if it had a wider choice. Our decision to restrict reannouncements to



sequentially rational plans conforms to the proverb: "Fool me once, shame on
you; fool me twice, shame on me." Once fooled, the public will not believe
ahything but a sequentially rational plan.5 Previous definitions of time
inconsistency have not addressed this issue, but it must be addressed

whenever the game goes beyond the ruler's last move.

5. POLICY FORMATION

In the Kydland & Prescott (1977) Phillips curve model, a government
commitment to inflation policy cannot take the form of any reaction function
(with domain being the history of citizen employment decisions). In Fischer's
saving-taxation model (1980), a government commitment to tax policy cannot
take the form of any reaction function (with the domain being the history of
citizen saving decisions). In Stackelberg duopoly, a leader commitment to
output cannot take the form of any reaction function (with the domain being

the follower output decision).

In the time inconsistency literature, the government is restricted to plans '

that take the form of a single magnitude that applies uniformly across all

possible citizen histories standing at the government's "time to act.” Hence
the literature makes frequent use of the term "open loop" in describing the
"rules,” or commitment, regime. We need to account for the possible

imperfection of policy formation.

What motivates imperfect policy formation? The familiar game theoretic
reason why a player would have to take the same action at different nodes --

namely, imperfect information -- does not apply: if a government cannot

13
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observe an individual citizen's savings, how can it tax them? The appropriate
motivation is to realize that the real issue is not government action but
government commitment conveyance, and there may be limits on the
complexity of the commitments that the government can convey. Although
anyone who has observed the hundred or so volumes of the U.S. Code
Annotated may have doubts about this motivation, there is much intuition and
a long tradition behind the assumption that government may face coarseness

constraints in laying down policy.

To be precise, policy formation is described by a pair (F, C). F is a partition
of the ruler's nodes into eligible subsets. We use the term eligible in Selten's

sense (1975, 26): a set f of ruler nodes is eligible "if every play intersects [f] at

most once, and if the number of alternatives at [v] is the same for every [v] €

[fl." We call these eligible subsets policy sets. Loosely speaking, a policy set is
a set of nodes that the ruler must treat similarly when conveying a

commitment. It may be useful to think of a policy set as a "point in time."

For any fe F, let Arbe the set of all alternatives at the nodesinf. Cisa
partition of all the alternatives at all the ruler nodes; specifically, C partitions
these alternatives into subsets ¢ of all the Af. Each of these subsets, ¢, must be
eligible in Selten's sense (1975, 26): a subset c of Afis eligible "if it contains

exactly one alternative" at each node in the policy set.

The idea of policy formation is simpler than we are making it sound. A

policy set fis a set of ruler nodes and a choice c is a choice at a policy set. The
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idea of ¢ is to define the choosing of the "same action" at every node in a policy
set, as, for example, the taxing authority may be restricted to announcing a
single tax rate that will prevail in the second period, no matter what history

(or node) actually happens.

Now, a plan b for the ruler is eligible iff for every policy set f € F either

(1) the set of alternatives b specifies is an element of C,

or (2) the plan is sequentially rational at every node in f.

("Sequential rationality at a node" means that relation (1) holds at that node.)
Loosely speaking, programmers can think of option (1) as the "open-loop"

option and option (2) as the "closed-loop" option.

B is the set of eligible plans, so policy formation restricts the set of behavior
strategies of the reference game G that the ruler can convey a commitment to.
We depict policy sets by connecting ruler nodes in a single policy set with a

dashed line.

An example should clarify matters. Figure 4 portrays Stackelberg duopoly
with three output levels available to each firm. (The outputs and payoffs
shown correspond to Stackelberg and Cournot equilibria in a continuous
variable model.6) Firm 1 is the leader, or ruler, and all of her nodes are
contained in a single policy set. The three branches labelled [24], for example,
form a single choice ¢ at the policy set. She must announce such a c or declare

sequential optimality at the policy set. Her best plan is to announce [24]. This
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output level must be chosen at all three of the ruler's nodes because of the
policy set. (Note that the plan is neither a pure promise nor a pure threat.)
The plan elicits [12] in response. We can see that the Stackelberg equilibrium
(showh by the arrows) is time inconsistent; the ruler would like to revert to
[16].7

[Figure 4 here.]

If every policy set of an S-game is a singleton we say that the S-game

satisfies perfect policy formation. Otherwise policy formation is imperfect.

A ruler would always prefer perfect to imperfect policy formation, because
perfect policy formation expands the set of eligible plans. If the Stackelberg
ruler in Figure 4 had perfect policy (blot out the dotted line), she could then
announce a plan b* = [24, 24, 16] and enjoy payoff u(b*) = 640. As the picture is

drawn (imperfect policy formation) her optimal plan delivers only 576.

6. THE RULER'S WILLINGNESS TO PAY FOR COMMITMENT CONVEYANCE

When a ruler faces commitment dominant, how much is she willing to pay for
the ability to convey a commitment? Suppose the price of commitment conveyance

takes the form of a uniform deduction from every ruler payoff.8

To answer the question we must specify whether the commitment conveyance
thus procurred conforms to Interpretation 1 or Interpretation 2 set out earlier.
That is, we must specify whether commitment making is genuine or only
apparent. Under Type 1 commitment conveyance, where a commitment to a plan

must be genuine, the ruler is willing to pay up to and no more than
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8 = u(b) - ubd),
where b is an optimal plan and b' is a sequentially rational plan.

Under Type 2 commitment conveyance, where the commitment is only

apparent and the ruler knows that she will have the opportunity to deviate,

»

evaluating the ruler's willingness to pay is not so simple. Certainly 9, is a lower

bound on the ruler's maximum willingness to pay, since the ruler can enjoy the
payoff associated with actually sticking to an announced optimal plan. Ifan

optimal plan b is time inconsistent, however, she would be willing to pay more

than §;, because she can do even better than u(b) by deviating somewhere along

the path. For example, in Figure1, §, = 3.25 (=[0.25* 5 + 0.75 * 4]-1), but the

ruler would be willing to pay upto 4 (=5-1) for Type 2 commitment conveyance.

But now consider Figure 5. With Type 2 commitment conveyance, the ruler
would not announce an "optimal” plan, like (I, 1) or (L, r), but rather (R, r),
intending to deviate at k. Thus we might say that the ruler is willing to pay1 (= 3 -
2) for Type 2 commitment conveyance. We might suppose, however, that an
announcement of (R, r) would arouse some suspicion. If player 2 has a shadow of
a doubt about the authenticity of the ruler's commitment, he might conclude, in
the spirit of the Intuitive Criterion of Cho & Kreps (1987) or forward induction (van
Damme [1989]), that the ruler's commitment is phony, since a ruler limited to
genuine commitments never would have a reason to annouce (R, r), whereas é
Type 2 ruler might have a reason.

[Figure 5 here.]
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Similarly, in the Stackelberg duopoly example treated in Section 5 and footnote
5, complete credulity on the part of the follower would cause a leader with Type 2
commitment conveyance to announce an output of 48, scaring the follower out of
the market, and permitting the leader to revise to the pure monopoly output of 24.

But again it is unreasonable to assume complete credulity when 48 is announced.

To formulate willingness to pay for Type 2 commitment conveyance, we
assume that if the ruler announces a suboptimal plan the public disregards the
announcement and proceeds as though it were common knowledge that the ruler
is fixed on some specific sequentially rational plan b'. Thus, if the ruler
announces a suboptimal plan the public "catches on" and the ruler receives the

sequentially rational payoff. This restriction transforms s(:) into a new public
response function, call it o(:). For any optimal plan b, o(b) := s(b); for any

suboptimal b, o(b) := s(b').

Once the ruler announces any optimal plan b* she can take one of two tacks:
she can exploit the most rewarding reversion opportunity along the path of (b¥,
s(b*)) , or she can stick to b*. The payoff from whichever tack is better, minus the

sequentially rational payoff, is the ruler's willingness to pay for Type 2

commitment conveyance, denoted 3,. Formally, let

Sy = max U (x(b*v,b), { 0%, v, 60)) ) - ulb)

b* is optimal
veR
b' is sequentially rational



The willingness to pay for Type 2 commitment conveyance is:

82 = maX[Sl, STI].

7. THE SAVINGS-TAXATION EXAMPLE

Here we give an S-game rendition of one of the familiar time inconsistency
models: the saving-taxation model, exposited thoroughly by Fischer (1 980)
using a representative individual. In the first period citizens decide how
much to save and in the second period they decide how much to work. In the
first period the utilitarian government does nothing, and in the second period
it levies taxes on labor income and accumulated savings to finance a public

good.

In what the literature calls a "rules" regime, the government conveys a
commitment to tax rates before the savings decision is made. The rules
regime faces imperfect policy formation. The government can commit only to
a tax plan that levies the same pair of tax rates at any "second period” node.
That is, the government cannot make its tax plan contingent on citizen
behavior. We are not arguing that this is a reasonable restriction; we are only

describing the existing literature.

Alternatively, in what is called a "discretionary” regime, it is common
knowledge that the government reoptimizes given the history of citizen
decisions. In our language, the discretionary regime is a ruler restricted to

sequentially rational plans.



Because savings taxation is nondistortionary the discretionary government
will opt to tax savings heavily. Foreseeing this, citizens curtail savings in the
first period. Everyone is better off under the rules regime because the
government commits to moderate taxes on savings, inducing greater savings
and hence more second-period consumption and public good provision. The
externality driving the model is that each citizen does not consider the
public-good benefit accruing to the other citizens when making his savings

decision.

An S-game rendition is offered in Figure 6. There are two citizens (players
2 & 3) and a utilitarian government (player 1). Although Fischer's model uses
continuous variables, we need only depict the choice levels that arise under

the various regimes. The figure shows the two citizens simultaneously

choosing between the Low savings induced by the discretionary regime and
the High savings induced by the rules regime. The combinations of their
choices imply four nodes for the government, which, in keeping with the
literature, form a single policy set (shown by the dotted line).

[Figure 6 here.]

Each action at a government node represents a tax-rate pair for labor and

accumulated savings. From left to right the four actions are:

tp; - the sequentially rational tax-rate pair when each citizen has

chosen Low savings.

tpp- the sequentially rational tax-rate pair when one citizen has

chosen Low savings and the other has chosen High savings.



tpg - the sequentially rational tax-rate pair when both citizens have

chosen High savings.

tgr - the optimal tax-rate pair when the government enjoys

commitment conveyance.

(D subscripts are for "discretion," R for "rules.”) Again, in Fischer's model
the tax rates are continuous variables but we can simulate the continuous
model by considering only the relevant choices. Note also that after tax-rates
are confirmed individuals make a labor decision, which we do not depict
because a unique equilibrium set of labor decisions will be implied by each

' history.

The discretionary regime cannot convey a commitment and, hence, is
restricted to sequentially rational play, shown in Figure 6 by the double
arrows. We assume that the citizens respond with a subgame perfect
equilibrium in the game induced by the common knowledge of the
government's plan. Hence the discretionary outcome is terminal node D.
Notice that the citizen game induced by discretion is a prisoners' dilemma.
This result is generalized by Hillier, Klein, and O'Flaherty (1992). There is
always a prisoners’ dilemma lurking behind Paretian commiment

dominance.

A ruler with commitment conveyance will announce the tax-rate pair tp,

eliciting High savings from the citizens. Abiding by the plan would yield



outcome R, which Pareto dominates the discretionary outcome. The
government would do even better if it could renege on its commitment, and,
once at node z, both citizens would support such a reneging, which would

yield the fooling outcome F.

Notice that if policy formation were perfect the ruler could announce an
optimal plan that yielded the payoff of the time inconsistent reversion from the

optimal plan shown in the figure (that is, payoff = 20). For example, she
would announce (tg, tg, tg, tps ) and receive a payoff of 20. This plan would be

time consistent. Klein & O'Flaherty (1992) generalize this result, proving that
for any S-game with perfect policy formation some Paretian ruler has time
consistent optimal plans. Thus imperfect policy formation lies at the heart of

Paretian time inconsistency.

Figure 6 demonstrates the two points emphasized by the time
inconsistency literature: (1) even a Paretian government may need
commitment conveyance, and (2) there may be a conflict between optimality

and consistency.

8. CONCLUSION

By designating a ruler who conveys a commitment prior to the play of a
game, this paper offers a game-theoretic formulation of commitment and
time consistency. We formulate the coarseness of policy formation, and
discuss the ruler's willingness to pay for commitment conveyance. Our
formulation is not proposed as a replacement for the current understanding

of commitment and time consistency. Rather, we have tried to remain



faithful to the usages of Stackelberg analysis, Schelling's discussions, and the
time inconsistency literature. We have tried to join various streams in a more

rigorous, more general, and more complete framework.

S-game apparatus invites development and diverse application. Consider
an S-game version of a one-shot sequential prisoner's dilemma with perfect
policy formation. In pure plans, with the ruler moving seéond, the optimal
plan induces mutual cooperation (as demonstrated by Thompson & Faith
(1981, 372)). This is a true and familiar story. Perhaps daily we witness a
situation in which a player moving second conveys a promise to return

cooperation.




Notes

1 Exceptions to the absence of commitment in pure theory include O'Flaherty's
(1985) development of commitment as selective subtractions from one's own
payoffs, and Thompson & Faith's (1980; 1981) study of commitment hierarchy.
Simaan & Cruz (1973a, 1973b) offer a general discussion of Stackelberg play in
non-zero sum games. Authors that incorporate commitment choices into a
specific model include Lohmann (1990) and Flood & Isard (1989). An application
of the commitment ideas developed here is Klein (1990).

2Schelling (1960, p177) pointed out: "randomization is evidently relevant to
promises. If the only favors available to be promised are larger than necessary
and are not divisible, a lottery that offers a specified probability of the favor's being
granted can scale down the expected value of the promise and reduce the cost to
the person making it."

3To be precise, when the genie appears the ruler gets to reannounce
convincingly any sequentially rational plan. The new plan may differ from the
original plan but still not specify a different local strategy where the genie
appeared. See footnote 3 for further discussion.

4 An important note of interpretation: Suppose b is time inconsistent at v and by,
is a mixed strategy. If the ruler reverts to an sequentially rational plan b’ at v,
and b'y specifies an action which received positive probability under by, how

would the citizens know that the ruler changed her plan? We must assume that
the citizens are fully informed of the new plan; they see the new roulette wheel
that is spun at v, as well as the wheels to be spun at successor ruler nodes. The
authors are grateful to Stergios Skaperdas for pointing this out.

5 None of the discussion of this paper depends on the decision to restrict b'(v) to

sequential rationality. In Klein & O'Flaherty (1992) we use a weaker definition of
time inconsistency which permits b'(v) to be any plan.

6Market clearing price = 100 - 2(y; + y). Marginal cost = 4. The Cournot



equilibrium is y; = yo = 16. The Stackelberg equilibrium is y; = 24, y, =12.

7In the continuous space model the best deviation would be to 18. We could have
included an action of 18 in the Figure but chose instead to minimize clutter.

8 In this discussion we assume "SR-equivalence,” which is a condition treating
ties in ruler payoffs (Klein & O'Flaherty 1991). It is of small importance.
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Figure 1

"If you scratch my back I'll scratch your back."

scratch 1's
back

don't scratch
1's back

1

payoff to 1 (ruler) 1

ayoff to 2 (citizen) 3
pay (ci ) scratch 2's

back

don't scratch
2's back 25 75

S5
0 4
z :

b and s(b) are shown by the arrows; b specifies (don't
scratch) with .25 probability and (scratch) with .75
probability. b is optimal and sequentially irrational, and it
is time inconsistent because atv 1 would like to switch to
sequentially rational play (don't scratch).



Figure 2

"Scratch my back or else I'll break your back."

don't scratch
1's back

scratch 1's
back

payoff to 1 (ruler) 2
payoff to 2 (citizen) 1 break 2's
back

don't break
2's back

0 1
0 2
z

b and s(b) are shown by the arrows. b is optimal,
sequentially irrational, and time consistent.



Figure 3

A standard game formulation of
the commitment story of Figure 1.

1

commit to quid do not commit

pro quo

don't
scratch

scratch
1's back

payoff to 1: 4 1 5 1
payoff to2: 4 3 0 3

The arrows show the unique perfect equilibrium.



Figure 4

Stackelberg Duopoly.

24 fJ16 12 24

payoffto 1 (rulery O 256 288 384 512 480 576 640 576
payoffto2 (citizen) O 384 576 256 512 640 288 480 576

Every ruler node is contained in a single
policy set (shown by the dotted line).
b and s(b) are shown by the arrows.
b is optimal and time inconsistent.



Figure 5

payoff to 1 (ruler) 2
payoff to 2 (citizen) 0

If you were Player 2, how would you respond
to the ruler's announcemnt of (R, r)?



Figure 6
The savings-taxation model with two citizens.

Low savings High savings

Payoffs are listed in the order: player 1 (ruler)
player 2
player 3
Double arrows show strategies under sequential
rationality (or "discretion"). Notice that under
this regime the citizens are playing a prisoner's
dilemma.

Single arrows show strategies under the optimal
plan ("rules" regime). The optimal plan is time
inconsistent.

Notice that if the ruler had perfect policy
formation (blot out the dashed line), she could
announce R at w, X, and y and tD3 at z. That plan
would be time consistent and arrive at node F.



